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Abstmet. Geometrical arguments are given which suggest that the Alexander-Orbach 
conjecture does not hold for lattice animals in d = 2 and for the diffusion-limited aggregates 
for large dimensions. 

The Alexander-Orbach (AO) (Alexander and Orbach 1982) conjecture has recently 
received much attention for its intriguing relation between static and dynamic 
exponents. This conjecture based on numerical evidence was originally made for the 
percolating cluster. Imagine a random walk on a percolating cluster. The fractal 
dimensionality of the walk d, is defined by r d w -  t where t is the time required for a 
RMS displacement r. If df is the fractal dimension of the percolating cluster AO 

conjecture states that the ‘fracton’ dimension d, given by d, = 2df/ d, has its mean field 
value d, = $ for any value of the Eucledian dimensionality d. 

An argument in favour of this conjecture was given by Rammal and Toulouse 
(1983) and in a more elaborate way by Leyvraz and Stanley (1983). Numerical 
evidence (Pandey and Stauffer 1983, Havlin and Ben-Avraham 1983, Ben-Avraham 
and Havlin 1983) also seems to support this conjecture. On the contrary, using the 
result of Wallace and Young (1978) that the resistivity exponent 2 = 1 to all orders 
in E ,  Harris and Lubensky (1983) recently argued that AO should fail for percolation. 
However, Coniglio (1983a) and Grest (1983) have recently questioned the validity of 
the &-expansion for the resistivity exponent. 

More recently the AO conjecture has been tested numerically in other systems such 
as the diffusion limited aggregates (Meakin and Stanley 1983) and random lattice 
animals (Sahimi 1983, Wilke et 1983, Gould and Kohin 1983) in both two and three 
dimensions. The data have been found to be consistent with AO. 

In this letter we will give a simple geometrical argument to show that AO cannot 
hold exactly for lattice animals in d = 2, and for diffusion limited aggregate for higher 
dimensions. We will also provide arguments to show that for random percolation and 
lattice animals AO conjecture is expected to hold to a good approximation in higher 
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dimensions. In contrast, we show that AO conjecture holds better in lower dimensions 
for diffusion limited aggregates. 

We first express the AO conjecture in a different way (Stanley and Coniglio 1984). 
It is well known (Gefen et a1 1983, Havlin and Ben-Avraham 1983) that from the 
Einstein relation between the conductivity and the diffusion constant, using scaling 
arguments one can relate the conductivity exponent ;= d - 2 + 2" to the fractal 
dimension df and d, via 

2 = d,-df (1) 

where 2 is the resistivity exponent describing the divergence of the resistance R between 
two points separated by a distance of the order of the connectedness length 6 :  R - 6'. 
In the nodes, links and blobs model (Coniglio 1981) this would be the resistance 
between the nodes. From (1) it follows that the AO conjecture d,/df =$ is equivalent 
to 

Z=Ld 2 f -  (2) 
In the lattice animal problem it is well established that loops are irrelevant 

(Lubensky and Isaacson 1979, Family 1980, 1982, Gaunt et af 1982, Coniglio 1983b). 
Therefore a lattice animal on a large scale can be viewed as a branched fractal without 
loops (figure 1). The resistance R between two points separated by a distance of the 
order of 6 clearly satisfies the inequality R > 5 since the end-to-end distance is smaller 
than any other length. Since R - 5' it follows that 2" 2 1 which contradicts AO conjecture 
(2). In fact for d = 2 ,  d,<2 (Family 1980), hence 2 = i d f < 1 .  Note that the same 
argument does not apply to percolation since loops are relevant and therefore R may 
be less than 6 (Coniglio 1981). 

For diffusion limited aggregates (Witten and Sander 1981) it is generally believed 
that df- d for large d (Muthukumar 1983, Witten and Sander 1983). On the other 
hand in each branch the number of sites is expected to be proportional to 
(figure 2). Therefore for high d, 2" = 2 in contradiction with AO conjecture (2). 

We now give an argument to show that both for percolation and lattice animals 
even if AO does not hold exactly, it is expected to be verified to a good approximation. 
For d larger than the upper critical dimensionality d ,  the backbone is made of singly 
connected bonds which coincide with the resistance R as in figure 1. From the backbone 

Fwre 1. A lattice animal configuration. The resist- 
ance between i and j ,  R ,  is larger than (. 

Figure 2. Diffusion limited aggregation on the Cay- 
ley tree (corresponding to large values of d ) .  All 
the incoming particles occupy all the available sites 
giving a fractal dimensionality d,= d (i.e. no 
screening). 
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bonds other chains emanate which are dangling ends. Above d, the excluded volume 
effect is absent and the critical exponent stick at their mean field value Z = 2 ,  d, = 4 
satisfying ( 2 ) .  A simple physical argument to show how ( 2 )  is verified above d, is the 
following. Let w be the probability that from a given site on the backbone emanate 
a dead end chain. Then, WR is the number of dead end chains. Since each chain is 
roughly similar to the backbone chain we have s* - R 2  where s* - .$‘f is the mass of 
the incipient infinite cluster. Since R - 6’ it follows ( 2 ) .  Below d, the excluded volume 
effect is present and the percolation backbone is a more complex structure made of 
links and blobs. However, one would still expect relation ( 2 )  to hold to a good 
approximation due to the branched structure. 

For non-branched fractals such as the backbone of the percolating cluster, the 
one-dimensional case and the Sierpinski gasket, the above argument shows that AO is 
very far from being satisfied. 

In conclusion we have given a simple argument which shows that the Alexander- 
Orbach conjecture fails for random animals in d = 2 and for diffusion limited aggregates 
for larger values of d. Whether it holds for percolation, the present consideration 
cannot exclude. However, if AO does not hold for some value of d this is expected 
to be for d = 2 .  Therefore, it is at d = 2  where the numerical efforts should be 
concentrated to prove or disprove AO. 
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